76 research outputs found

    A Resource Allocation Algorithm for Ultra-Dense Networks Based on Deep Reinforcement Learning

    Get PDF
    The resource optimization of ultra-dense networks (UDNs) is critical to meet the huge demand of users for wireless data traffic. But the mainstream optimization algorithms have many problems, such as the poor optimization effect, and high computing load. This paper puts forward a wireless resource allocation algorithm based on deep reinforcement learning (DRL), which aims to maximize the total throughput of the entire network and transform the resource allocation problem into a deep Q-learning process. To effectively allocate resources in UDNs, the DRL algorithm was introduced to improve the allocation efficiency of wireless resources; the authors adopted the resource allocation strategy of the deep Q-network (DQN), and employed empirical repetition and target network to overcome the instability and divergence of the results caused by the previous network state, and to solve the overestimation of the Q value. Simulation results show that the proposed algorithm can maximize the total throughput of the network, while making the network more energy-efficient and stable. Thus, it is very meaningful to introduce the DRL to the research of UDN resource allocation

    Identification of Differentially Expressed Hub Genes Associated With Immune Cell Recruitment in Claudin-Low Breast Cancer

    Get PDF
    Breast cancer (BCa) is the most common malignancy in women and claudin-low breast cancer (CL-BCa) is a newly identified BCa subtype characterized by low expression of claudin 3&4&7. However, the hub genes associated with the recruitment of immune cells into CL-BCa were rarely described. This study aimed at exploring the differentially expressed hub genes associated with tumor-infiltrating immune cells in CL-BCa by a multi-approach bioinformatics analysis. The top 200 genes associated with CL-BCa were screened in the METABRIC dataset; the PPI network was constructed using STRING and Cytoscape; tumor-infiltrating immune cells were analyzed by TIMER 2.0; and the correlation of feature cytokines and claudins on survival was examined in METABRIC and TCGA datasets. Consequently, we found that the fraction of tumor-infiltrating immune cells, especially CD8+T cells and macrophages, increased in the CL-BCa. Differentially expressed cytokines (CCL5, CCL19, CXCL9 and CXCL10) were related to the overall survival, and their expression levels were also examined both in tumor tissues of CL-BCa patients by IHC and in typical CL-BCa cell lines by qPCR. Moreover, the BCa patients with low expression of these differentially expressed claudins (CLDN8, CLDN11 and CLDN19) showed a worse overall survival. This study sheds light on molecular features of CL-BCa on immune microenvironments and contributes to identification of prognosis biomarkers for the CL-BCa patients

    Exosomal miRNAs in autoimmune skin diseases

    Get PDF
    Exosomes, bilaterally phospholipid-coated small vesicles, are produced and released by nearly all cells, which comprise diverse biological macromolecules, including proteins, DNA, RNA, and others, that participate in the regulation of their biological functions. An increasing number of studies have revealed that the contents of exosomes, particularly microRNA(miRNA), play a significant role in the pathogenesis of various diseases, including autoimmune skin diseases. MiRNA is a class of single-stranded non-coding RNA molecules that possess approximately 22 nucleotides in length with the capability of binding to the untranslated as well as coding regions of target mRNA to regulate gene expression precisely at the post-transcriptional level. Various exosomal miRNAs have been found to be significantly expressed in some autoimmune skin diseases and involved in the pathogenesis of conditions via regulating the secretion of crucial pathogenic cytokines and the direction of immune cell differentiation. Thus, exosomal miRNAs might be promising biomarkers for monitoring disease progression, relapse and reflection to treatment based on their functions and changes. This review summarized the current studies on exosomal miRNAs in several common autoimmune skin diseases, aiming to dissect the underlying mechanism from a new perspective, seek novel biomarkers for disease monitoring and lay the foundation for developing innovative target therapy in the future

    Post-capitalist property

    Get PDF
    When writing about property and property rights in his imagined post-capitalist society of the future, Marx seemed to envisage ‘individual property’ co-existing with ‘socialized property’ in the means of production. As the social and political consequences of faltering growth and increasing inequality, debt and insecurity gradually manifest themselves, and with automation and artificial intelligence lurking in the wings, the future of capitalism, at least in its current form, looks increasingly uncertain. With this, the question of what property and property rights might look like in the future, in a potentially post-capitalist society, is becoming ever more pertinent. Is the choice simply between private property and markets, and public (state-owned) property and planning? Or can individual and social property in the (same) means of production co-exist, as Marx suggested? This paper explores ways in which they might, through an examination of the Chinese household responsibility system (HRS) and the ‘fuzzy’ and seemingly confusing regime of land ownership that it instituted. It examines the HRS against the backdrop of Marx’s ideas about property and subsequent (post-Marx) theorizing about the legal nature of property in which property has come widely to be conceptualized not as a single, unitary ‘ownership’ right to a thing (or, indeed, as the thing itself) but as a ‘bundle of rights’. The bundle-of-rights idea of property, it suggests, enables us to see not only that ‘individual’ and ‘socialized’ property’ in the (same) means of production might indeed co-exist, but that the range of institutional possibility is far greater than that between capitalism and socialism/communism as traditionally conceived

    SURFACE-INITIATED ATOM TRANSFER RADICAL POLYMERIZATION OF HYDROXYETHYL ACRYLATE FROM ACTIVATED CARBON POWDER WITH HOMOGENIZED SURFACE GROUPS

    No full text
    The well-defined poly(hydroxyethyl acrylate) (PHEA) brushes were grafted from the surfaces of the activated carbon (AC) powder with the controlled/"living" radical polymerization technique. First, surface functional groups of the AC powder were homogenized to hydroxyl groups by oxidizing with nitric acid and then reducing with lithium tetrahydroaluminate (LiAlH4) at first. Second, the surface hydroxyl groups were treated with bromoacetylbromide, and the bromoacetyl groups were introduced. And in the third step, the bromoacetyl activated carbon (BrA-AC) powder were used as macro-initiators for the surface-initiated atom transfer radical polymerization (SI-ATRP) of hydroxyethyl acrylate (HEA) in the presence of 1,10-phenanthroline and Cu(I)Br as catalyst in a water system. The graft parameters calculated from the elemental analyses (EA) results, conversion of monemer (C%) and percentage of grafting (PG%) were 5.74% and 28.7%, respectively, after polymerizing for 5 h. The graft polymerizations exhibited the characteristics of a controlled/"living" polymerization, and no homopolymer was found in the proposed polymerizing process. The preparation procedure of the poly(hydroxyethyl acrylate) grafted activated carbon (PHEA-AC) powder was also investigated by X-ray photoelectron spectroscopy (XPS). The PHEA-AC powder is expected to be used as selective adsorbents because of their abundant homogenized surface hydroxyl groups.Surface-initiated atom transfer radical polymerization, hydroxyethyl acrylate, activated carbon, homogenization of surface group
    • …
    corecore